
An Empirical Study of the Imbalance Issue in
Software Vulnerability Detection⋆

Yuejun Guo1 ID , Qiang Hu2 ID ⋆⋆, Qiang Tang1 ID , and Yves Le Traon2 ID

1 ITIS, Luxembourg Institute of Science and Technology, Luxembourg
{yuejun.guo,qiang.tang}@list.lu

2 SnT, University of Luxembourg, Luxembourg
{qiang.hu,yves.letraon}@uni.lu

Abstract. Vulnerability detection is crucial to protect software secu-
rity. Nowadays, deep learning (DL) is the most promising technique to
automate this detection task, leveraging its superior ability to extract
patterns and representations within extensive code volumes. Despite its
promise, DL-based vulnerability detection remains in its early stages,
with model performance exhibiting variability across datasets. Drawing
insights from other well-explored application areas like computer vision,
we conjecture that the imbalance issue (the number of vulnerable code
is extremely small) is at the core of the phenomenon. To validate this,
we conduct a comprehensive empirical study involving nine open-source
datasets and two state-of-the-art DL models. The results confirm our
conjecture. We also obtain insightful findings on how existing imbal-
ance solutions perform in vulnerability detection. It turns out that these
solutions perform differently as well across datasets and evaluation met-
rics. Specifically: 1) Focal loss is more suitable to improve the precision,
2) mean false error and class-balanced loss encourages the recall, and 3)
random over-sampling facilitates the F1-measure. However, none of them
excels across all metrics. To delve deeper, we explore external influences
on these solutions and offer insights for developing new solutions.

Keywords: Software security · Vulnerability detection · Deep learning
· Imbalance.

1 Introduction

The existence of software vulnerability is an inevitable risk in the software de-
velopment life cycle, which raises significant concern since the vulnerability can
be exploited by cybercriminals to run malicious code, install malware, and steal
sensitive data. Discovering vulnerabilities in advance of the final deployment is
ever required to enhance software security.

⋆ This work is funded by the European Union’s Horizon Research and Innovation
Programme under Grant Agreement n◦101070303.

⋆⋆ Corresponding author.

https://orcid.org/0000-0002-5535-2420
https://orcid.org/0000-0002-8251-1669
https://orcid.org/0000-0002-6153-4255
https://orcid.org/0000-0002-1045-4861

2 Y. Guo et al.

Manually identifying a function as vulnerable or not is tough concerning
the required domain expertise and time. Fortunately, the rapid progress of deep
learning (DL) largely automates this process [42]. In this paper, we are interested
in applying DL to software vulnerability detection at the function level, which
enables early detection of vulnerabilities during the programming stage. Figure 1
shows an example of a vulnerable function tagged with ID CVE-2017-75973. The
detailed information is that tif_dirread.c in LibTIFF 4.0.7 has an “outside the
range of representable values of type float” undefined behavior issue, which might
allow remote attackers to cause a denial of service (application crash) or possibly
have unspecified other impacts via a crafted image.

Fig. 1: An example of vulnerable code: a C-language function from the LibTIFF
project [41]. This function is tagged with the “Denial of Service” vulnerability
in the Lin2018 dataset (please refer to Section 4.1 for more details). The code
framed in a red rectangle highlights a concern about handling cases of division
by zero when m.i[1] == 0.

Although various DL models [9,37,17,19] have been designed for vulnerabil-
ity detection, the imbalance issue that causes a high false positive rate or false
negative rate [10] is usually ignored. In this paper, “imbalance” refers to the nu-
meral difference where the number of vulnerable code is much less than secure
code in a dataset. In practice, software vulnerabilities do exist but rarely (e.g.,
1 vulnerability in every 500 C-language functions) in source code programmed
by experienced software developers. This imbalance problem is widely studied
in other areas, such as computer vision (CV) and natural language processing
3 https://www.cvedetails.com/cve/CVE-2017-7597/?q=CVE-2017-7597

https://www.cvedetails.com/cve/CVE-2017-7597/?q=CVE-2017-7597

Imbalance in Software Vulnerability Detection 3

(NLP), and to tackle it, both data and model-level methods have been proposed.
The main idea is to put more importance on the minority set. Data-level meth-
ods straightforwardly down-sample [15] the majority set or over-sample [55] the
minority set to ensure the numeral balance of data. Model-level approaches focus
on the loss function [32,13] that guides the training procedure via adjusting the
weights of majority and minority sets.

Although DL-based vulnerability detection is gaining attention, how the im-
balance issue affects the “performance” of DL models in this specific area is still
an open question. What makes things more complex is that, the model perfor-
mance is evaluated by various metrics in the literature [26], such as accuracy [35],
precision, and false positive rate. This makes it very difficult to compare their
performance. For instance, the state-of-the-art (SOTA) model CodeBERT [35] is
reported to achieve over 60% detection accuracy, while the false negative rate is
70%. The model is acceptable if accuracy is the evaluation criterion but useless
in the case of a false negative rate.

In this paper, we conduct a comprehensive study on the imbalance issue in
DL-based vulnerability detection. Through a series of experiments, our findings
are summarized as follows. First of all, our first experimental results show that
the imbalance problem tends to cause a model to gain a relatively low loss on
secure code compared to the vulnerable one during the training procedure. Thus,
The false negative rate is high.

Second, we experiment on how the imbalance solutions adapted from the CV
and NLP domains perform in vulnerability detection. Our results show that:

– Compared to accuracy and false positive rate, precision, recall, and F1-
measure are more informative when evaluating a DL model for vulnerability
detection.

– None of the existing solutions from other domains performs perfectly across
all selected datasets and models. Model-level solutions are beneficial to precision
and recall. Data level solutions are more helpful to F1-measure.

Third, apart from the designed methodology, we explore how external factors
affect the effectiveness of existing solutions, where these factors come from source
code, such as the appearance of vulnerability types in the training procedure and
test time and the detection difficulty of vulnerable code. Our experiment results
show that external factors, such as the absence of vulnerabilities, identification
difficulty of certain vulnerability types, and data distribution need to be consid-
ered when designing a new solution specifically for vulnerability detection.

For the readers to validate our findings, the experiment datasets and artifacts
(including all solutions) for reproduction are made available on Git4.

2 Background and Related Work

2.1 Software Vulnerability Detection

A software vulnerability is a security flaw and glitch found in source code. Detect-
ing vulnerabilities has attracted considerable interest in the security community.
4 https://github.com/testing-cs/vulnerability-detection.git

https://github.com/testing-cs/vulnerability-detection.git

4 Y. Guo et al.

Manually checking source code is straightforward, but even for experts, this task
is tedious and subjective because of great code complexity and diverse program-
ming languages. At a higher level, there is the popular fuzzing [1] technique that
automates the task. The basic idea of fuzzing is to generate a large number of
test cases that are fed into the target program for execution. When a crash is
triggered, it will be first determined as a bug or not and further identified as a
vulnerability or not by exploitability analysis [16]. Since fuzzing highly relies on
the generated test cases and the target program is required to be executed to
monitor the behavior, it cannot be applied during a very early stage, such as the
programming time.

Traditional detection tools like static analyzers [2] often require manual fea-
ture engineering by security researchers and target specific vulnerabilities, which
is less efficient [43]. Deep learning (DL) facilitates the static analysis without
running the target program and is feasible to function at different code module
granularity [12], such as file level [18], function level [53,35,30,29], and program
slice level [28,27]. Various DL models have been developed in the literature to
support automated vulnerability detection. Simple examples [26] include multi-
layer perception (MLP), convolutional neural network (CNN), long short-term
memory (LSTM), gated recurrent unit (GRU), bidirectional LSTM, and bidirec-
tional GRU. Advanced ones dedicated to the structural representation of source
code with graph neural networks, such as Devign [53] proposed by Zhou et al..
More recently, the application of foundation models is changing the domination
of these task-specific models, which is discussed in the next subsection.

2.2 Recap of (foundation) DL Models

In classical DL, a model is initially randomly parameterized. Given a large set
of labeled data, the model is trained with a certain number of epochs to achieve
a satisfying performance for a given task. Therefore, this type of model is also
called the task-specific model. Depending on the data type, model architecture,
and learning task, the training procedure can take minutes or days. For instance,
given the ImageNet-1k dataset to obtain an image classification model with
ResNet-50, the 90-epoch training takes 14 days on a NVIDIA M40 GPU [51].

Different from task-specific models, foundation models, aka pre-trained mod-
els [20]5, break the limitation of relying on labeled data and have been a new
paradigm of artificial intelligence (AI) [6]. Generally, a foundation model is
trained using a huge volume of unlabeled data at scale and can be used for a wide
range of downstream tasks. Via a few epochs’ fine-tuning, the model can achieve
SOTA performance. Foundation models have been increasingly developed and
brought dramatic improvements in various communities, such as computer vi-
sion, natural language processing, and software engineering. Example models
are the bidirectional encoder representations from transformers (BERT) [14],

5 The term “foundation model” is used in this paper because, in the literature, a
“pre-trained model” also has the meaning of a model trained by someone else and
targeting a similar task[24,11].

Imbalance in Software Vulnerability Detection 5

generative pre-trained transformer 3 (GPT-3) [7], Roberta [33], ViLBERT [34],
VideoBERT [45], CodeBERT [17], and GraphCodeBERT [19].

2.3 Solutions for Addressing Imbalance

There are mainly two types of methods for the imbalance issue, data level and
model level [8]. Data level solutions focus on balancing the data size between
minority and majority, such as down-sampling on majority and over-sampling
on minority. The basic re-sampling strategy is in a random manner where sam-
ples are randomly selected to be removed [15] or duplicated [22]. An advanced
over-sampling is to introduce new data based on neighboring samples [10] or syn-
thesized [55]. However, advanced solutions [38] are data-dependent and some are
inapplicable to source code. For instance, SMOTE [10] generates a new sample
by joining k minority class nearest neighbors in the feature space, but generated
code are likely to be invalid concerning both the syntax and semantics. Shu et
al. [44] proposed Dazzle that leverages the Wasserstein Generative Adversar-
ial networks as an over-sampling solution for software vulnerability detection.
However, how to ensure the correctness of generate code is not addressed.

Model-level solutions, also known as cost-sensitive learning [13], assume the
costs (represented by the loss) caused by different errors are unequal. The most
common way is to put higher weight on the loss of the minority and less on the
majority. Typical solutions include calculating the loss on minority and majority
separately [49], effective number-based re-weighting [13], and misclassification-
focused [32]. All these solutions adjust the decision boundary during the training
procedure. Another method, threshold-moving [21] adjusts the boundary in the
test time, which is simple but sensitive to the change in data.

Most existing solutions are initially proposed and studied in computer vi-
sion [13,32,8] and natural language processing [13,49]. In this paper, we investi-
gate their effectiveness for software vulnerability detection.

3 Empirical Study Design

Figure 2 gives an overview of our study design. In total, four research questions
are framed:
RQ1: How does imbalance impact model performance in vulnerability detection?
RQ2: Which metrics are appropriate for evaluating detection models?
RQ3: How effective are existing solutions in mitigating imbalance in vulnerabil-
ity detection?
RQ4: What external factors may hinder the solutions to work?

3.1 Sketch of DL-based Vulnerability Detection Task

Generally, deep learning approaches formalize the vulnerability detection task
as a binary classification problem, i.e., identifying a given code sample as secure
(the label is 0) or vulnerable (the label is 1) [53]. Formally, let D = {x, y} be a

6 Y. Guo et al.

Random down-sampling
Random over-sampling
Adversarial attack

Threshold-moving
Mean false error
Class-balanced loss
Focal loss

Accuracy
False positive rate
False negative rate
Precision, Recall, F1

MetricsSolutions

DL modelTraining code

“vulnerable”

error

=?
vulnerable

secure

Labelsforward

backward

Performance report

Test code

Fig. 2: Overview of the empirical study. During the training procedure (top), a
foundation DL model is fine-tuned to minimize the error between predicted and
ground truth labels. In the test time (bottom), the trained model is used to make
predictions on test data. ❶❷❸❹ refer to four research questions.

source code set with samples, where x ∈ X and y ∈ Y represent a source code
sample and its corresponding label (Y = {0, 1}), respectively. fθ is such a binary
classifier parameterized by θ that maps the data space X to the label space Y .
The training procedure of the model is to find the optimal θ∗ that minimizes the
error between prediction and ground truth as shown in Figure 2. Formally, the
optimization objective is defined by:

θ∗ = argmin
θ∈Θ

ℓ (fθ, X, Y) (1)

where ℓ is a loss function that captures the error between the predicted labels
by fθ and ground truth labels. The loss function can be in different forms,
such as cross-entropy loss, mean squared error, and hinge embedding loss. For
vulnerability detection, the cross-entropy loss is mostly applied and in this form,
the objective becomes to minimize the cross entropy over all samples:

ℓ =
1

N

N∑
i=1

CE (pi, yi) (2)

where

CE (pi, yi) =

{
− log (pi) yi = 1

− log (1− pi) yi = 0
(3)

Note that in Eq. (2), the loss is an average over all samples. That is, all samples
are equally treated regardless of being secure or vulnerable, which is reasonable

Imbalance in Software Vulnerability Detection 7

when data are evenly distributed in two types. However, in reality, the number of
vulnerable code is usually much less than secure ones, which causes the imbalance
issue for training.

Remarkably, let p (0 ≤ p ≤ 1) be the predicted probability of x being vul-
nerable. In binary classifiers, usually, a decision threshold is set at 0.5. Namely,
if p > 0.5, x is determined as vulnerable, otherwise secure.

3.2 Imbalance Solutions

In total, we examine seven methods that are widely adopted in the literature to
handle the imbalance problem. These methods cover both the data and model-
level solutions. Note that data level (marked with *) solutions only carry out on
the training set during the training time. Let Ns and Nv denote the number of
secure and vulnerable code, respectively. Nd = Ns −Nv.

*Random down-sampling [15]. Nd secure code are randomly selected and
removed from the training set.

*Random over-sampling [22]. As opposed to down-sampling, Nd vulner-
able code are randomly selected from and replicated to the training set.

*Adversarial attack-based augmentation [50,52]. An advanced over-
sampling method that generates new vulnerable code via adversarial attack.
In this paper, we perform the variable renaming-based adversarial attack that
changes the name of local variables. The advantage is that the generated code
can pass the compiler and remain executable. To ensure that the substitute
name is natural to software developers, we use the masked language prediction
function of CodeBERT [17] to produce the candidates.

Threshold-moving [21], also known as threshold-tuning, post-scaling, and
thresholding. It adjusts the decision threshold and is applied during the test time.
Concretely, the model is trained using the training set and then used to predict
the probabilities of samples in the validation set. Given a candidate threshold
set, the performance on the validation set is evaluated on each candidate and
the threshold producing the best performance is selected as the optimal one for
the prediction on the test set. In this paper, we set the candidate threshold to
range from 0 to 1 with a 0.01 interval.

Mean false error (MFE) loss [49]. The concept comes from the “false pos-
itive rate” and “false negative rate”. The goal is to make the loss more sensitive
to the errors caused by the minority set by computing the loss on different sets
separately. The original base loss is the mean squared error for image classifica-
tion and document classification tasks. We adapt it to the cross entropy error to
fit vulnerability detection models. Formally,

ℓmfe =
1

Ns

Ns∑
i=1

CE (pi, yi) +
1

Nv

Nv∑
j=1

CE (pj , yj) (4)

Class-balanced (CB) loss [13]. This method addresses the imbalance issue
by introducing the effect number that refers to the expected volume of samples

8 Y. Guo et al.

of a given set. Formally,

ℓcb =
1

N

N∑
i=1

1− β

1− βNyi

CE (pi, yi) (5)

where Nyi
= Nv if yi = 1 otherwise Ns. As recommended [13], we set β = 0.9999.

Focal loss (FL) [32]. The idea is to put more focus on hard, misclassified
samples meanwhile reduce the loss for well-classified samples. For instance, given
three vulnerable code x1, x2, and x3, the model predicts them as vulnerable
with 0.9, 0.5, and 0.2 probability, respectively. x1 is well-classified. x2 is hard to
classify. x3 is misclassified as secure. Formally,

ℓfl = − 1

N

N∑
i=1

(1− pt)
γ
log (pt) (6)

where

pt =

{
pi yi = 1

1− pi yi = 0
(7)

when γ = 0, Eq. (6) is equivalent to Eq. (2). As recommended [32], we set γ = 2.

3.3 Evaluation Metrics

We investigate all the following six metrics which have been used in different
papers to evaluate software vulnerability detection models [9,17,19,53,28].

Accuracy [17,19,53] is the percentage of samples that are correctly classified
by a model. This metric may give a fake good performance. For instance, if a
test set has 100 code where only one is vulnerable. A model classifies all samples
as secure, so its accuracy is 99%, which is nearly perfect. However, this model is
useless as a detection model.

False positive rate (FPR) [28] measures the ratio of misclassified secure
code to the total number of secure samples. A low value means the model learns
very well from secure code.

False negative rate (FNR) [28] computes the ratio of misclassified vul-
nerable code to the total number of vulnerable samples. This metric focuses on
the ability to figure out vulnerable code. A low value indicates a strong ability.

Precision [53], also known as positive predictive rate, is the fraction of
correctly classified vulnerable code among samples classified as vulnerable.

Recall [53], the opposite of FNR, is the fraction of correctly classified vul-
nerable code among all vulnerable samples. In practice, precision and recall are
often in tension. Improving precision will cause recall to decay, and vice versa.

F1-measure (F1) [53] is defined as the harmonic mean of precision and
recall. It balances the importance between precision and recall.

Imbalance in Software Vulnerability Detection 9

4 Experimental Setup

All experiments were conducted on a high-performance computer (HPC) cluster
and each cluster node runs a 2.20GHZ Intel Xeon Silver 4210 GPU with an
NVIDIA Tesla V100 32G GPU. Models are trained and tested using the PyTorch
1.7.1 framework with CUDA 10.1.

4.1 Datasets

As listed in Table 1, nine function-level datasets from three open-source repos-
itories on GitHub are considered in the experiments. All the datasets are C-
language and the related projects are popular among software developers. De-
vign [40] is provided by Zhou et al. [54] and consists of two datasets collected
from the FFmpeg [5] and QEMU [4] projects, respectively. Labels of source code
are manually annotated by professional security researchers. Lin2018 [31]6 in-
cludes six datasets from Asterisk [3], FFmpeg [5], LibPNG [46], LibTIFF [41],
Pidgin [39], and VLC media player [48], respectively. For each project, source
code are manually labeled by Lin et al. according to the CVE and NVD records.
CodeXGLUE [36] provides a mixture version of two datasets from FFmpeg and
QEMU in Devign.

Table 1: Datasets overview. IR: imbalance ratio (#Secure
#V ulnerable).

Source Project Project description #Vulnerable #Secure #Total IR
FFmpeg A cross-platform to record, convert and stream audio and video. 4,981 4,788 9,769 0.96Devign QEMU A generic and open source machine emulator and virtualizer. 7,479 10,070 17,549 1.35
Asterisk A framework for building communications applications. 56 17,070 17,126 304.82
FFmpeg A cross-platform to record, convert and stream audio and video. 213 5,550 5,763 26.06
LibPNG Official PNG reference. 44 577 621 13.11
LibTIFF TIFF library and utilities. 96 731 827 7.61
Pidgin A multi-platform instant messaging client. 29 8,612 8,641 296.97

Lin2018

VLC A cross-platform multimedia player. 43 6,113 6,156 142.16
CodeXGLUE Devign Mixture of FFmpeg and QEMU. 12,460 14,858 27,318 1.19

To have a closer view of the vulnerabilities existing in these datasets, we pro-
vide Table 2. In total, 25 vulnerabilities are included and a certain vulnerability
may have more than one CVE record with different CVSS scores, e.g., Bypass a
restriction or similar.

4.2 Models

Two SOTA foundation models, CodeBERT [17] and GraphCodeBERT [19], for
natural language and programming language, are leveraged in this paper. Both
models follow BERT [14] and use multi-layer bidirectional Transformer [47] as

6 Notice: the number of data is a bit different from the original paper in [30] because
we remove empty source code files from the provided datasets. Empty files cause
compiling bugs and degrade the model performance.

10 Y. Guo et al.

Table 2: List of vulnerabilities. The common vulnerability scoring system (CVSS)
score measures the severity of a certain vulnerability type.
ID Vulnerability Type CVSS ID Vulnerability Type CVSS
1 Bypass a restriction or similar 4.3 - 7.5 14 Execute Code 5.8 - 9.3
2 Cross Site Scripting 4.3 15 Execute Code Gain privileges 6.5
3 Denial Of Service 2.6 - 7.8 16 Execute Code Memory corruption 6.8
4 Denial Of Service Execute Code 6.8 - 9.3 17 Execute Code Memory corruption Obtain Information 6.8
5 Denial Of Service Execute Code Memory corruption 6.8 - 10.0 18 Execute Code Overflow 6.0 - 10.0
6 Denial Of Service Execute Code Overflow 6.5 - 10.0 19 Execute Code Overflow Bypass a restriction or similar 6.8
7 Denial Of Service Execute Code Overflow Memory corruption 6.8 20 Execute Code Overflow Memory corruption 6.8
8 Denial Of Service Memory corruption 6.8 21 Gain privileges 9.0
9 Denial Of Service Obtain Information 4.3 - 10 22 Obtain Information 4.3 - 5.0
10 Denial Of Service Overflow 2.6 - 9.3 23 Overflow 4.3 - 10
11 Denial Of Service Overflow Memory corruption 4.3 - 6.8 24 Overflow Memory corruption 5.0
12 Denial Of Service Overflow Obtain Information 5.8 25 Unspecified 4.3 - 10.0
13 Directory traversal 5.8 - 9.3

the backbone. CodeBERT is pre-trained on 2.1M bimodal data and 6.4M uni-
modal codes. GraphCodeBERT is pre-trained on the CodeSearchNet [23] dataset
consisting of 2.3M functions paired with natural language descriptions. The main
difference between CodeBERT and GraphCodeBERT is that the source code in
CodeBERT is represented as a sequence of tokens, while GraphCodeBERT takes
the data flow of source code as its input.

Our implementation is adapted from the GitHub repositories provided by
CodeXGLUE7 for CodeBERT and by Microsoft8 for GraphCodeBERT, respec-
tively. The base models for fine-tuning are loaded from Hugging Face910 from
Hugging Face.

4.3 Training

Each model is fine-tuned 50 epochs and the “best” one is saved for evaluation.
For reproduction, we follow the default setting in original implementations to
set the random seed at 123456. In each dataset, we proportionally (8:1:1) split
the dataset into a training set, a validation set, and a test set (the training and
validation sets are involved in the training procedure, and the test set is only for
testing.). Vulnerable and secure code are randomly divided into these three sets
with the same imbalance ratio as in Table 1.

5 Results

5.1 RQ1: Influence of Imbalance in Vulnerability Detection

Experiments. We train CodeBERT and GraphCodeBERT with default settings,
ignoring the imbalance. For each trained model, we check if the imbalance causes
a bias towards secure code by comparing loss and accuracy across individual sets.

7 https://github.com/microsoft/CodeXGLUE
8 https://github.com/microsoft/CodeBERT
9 https://huggingface.co/microsoft/codebert-base

10 https://huggingface.co/microsoft/graphcodebert-base

https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeBERT
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/graphcodebert-base

Imbalance in Software Vulnerability Detection 11

Table 3: Model accuracy and loss on secure and vulnerable code. Baseline:
model accuracy on all code. The best performance is highlighted.

Accuracy (%) Total Loss Average lossSource Project Baseline Vulnerable Secure Vulnerable Secure Vulnerable Secure
CodeBERT

FFmpeg 56.71 62.17 51.04 537.37 449.77 0.72 0.63Devign QEMU 64.31 40.96 81.67 1361.10 583.43 1.21 0.39
Asterisk 99.77 44.44 99.96 33.75 3.18 3.75 0.00
FFmpeg 97.46 36.36 99.88 124.56 2.92 3.77 0.00
LibPNG 95.83 50.00 100.00 14.25 0.65 1.78 0.01
LibTIFF 88.89 53.33 93.69 49.34 30.54 3.29 0.28
Pidgin 99.85 60.00 100.00 17.14 0.08 3.43 0.00

Lin2018

VLC 99.89 85.71 100.00 3.07 0.08 0.44 0.00
CodeXGLUE Devign 61.49 31.95 86.59 1716.89 531.24 1.37 0.36

GraphCodeBERT
FFmpeg 56.99 74.87 38.39 437.05 559.02 0.58 0.78Devign QEMU 65.38 52.98 74.59 1001.18 776.03 0.89 0.51
Asterisk 99.81 44.44 100.00 31.18 0.90 3.46 0.00
FFmpeg 97.35 51.52 99.16 134.98 37.00 4.09 0.04
LibPNG 96.88 62.50 100.00 16.16 0.68 2.02 0.01
LibTIFF 92.06 33.33 100.00 47.81 1.31 3.19 0.01
Pidgin 99.85 60.00 100.00 13.18 0.39 2.64 0.00

Lin2018

VLC 99.68 57.14 100.00 11.77 1.26 1.68 0.00
CodeXGLUE Devign 62.81 58.25 66.69 1047.34 806.85 0.83 0.55

Results. Table 3 shows the results. Regardless of the model and evaluation
metric, the model performs better on the secure set than on the vulnerable one.
Considering the accuracy, except for the FFmpeg dataset in Devign, both models
achieve higher accuracy on secure code. Particularly, 100% secure code can be
perfectly identified in several datasets, such as LibPNG, LibTIFF, Pidgin, and
VLC. However, the performance in identifying vulnerable code is less satisfying.
For instance, in Asterisk from Lin2018, GraphCodeBERT can correctly identify
all secure code but only 44.44% vulnerable code. On the other hand, with re-
spect to the loss between prediction and ground truth, the loss on secure code
is, in general, much lower than on vulnerable code. For instance, on average,
CodeBERT has no loss on each secure code for Pidgin from Lin2018, but 0.44
on the vulnerable one. This indicates that during the training procedure, the
model tends to learn more from the secure code. When summing over all code,
the imbalance makes it worse, e.g., GraphCodeBERT has, in total, 0.39 loss on
secure code but 13.18 on vulnerable one. The reason is that, during the training
procedure, the loss is calculated as an average (Eq. (2)) or sum over all samples
(both the majority secure and minority vulnerable). This methodology weakens
the influence of vulnerable code and gives “fake” feedback to the training that
the model is performing well, which is the essence of the imbalance issue.

Answer : The imbalance encourages a DL model to gain more knowledge from
secure code, which leads to poor performance on detecting vulnerable code, e.g.,
44.44% accuracy (55.56% false negative rate).

12 Y. Guo et al.

5.2 RQ2: Analysis of Evaluation Metrics

Experiments. In the default setting of CodeBERT and GraphCodeBERT, for
each trained model, different metrics are used to evaluate the model performance.

Results. Table 4 lists the model performance. From the perspective of iden-
tifying vulnerable code, accuracy and FPR are not informative enough and can
be misleading. For instance, Table 3 shows that CodeBERT only successfully
detects 44.44% vulnerable code in Asterisk from Lin2018. However, the out-
put accuracy is almost perfect at 99.77%. The overall accuracy hides the actual
performance of detecting vulnerable code. FPR only considers the detection of
secure code, which misses the main purpose of vulnerable detection, namely to
identify vulnerabilities at an early stage. Recall (the opposite of FNR) is equiv-
alent to the individual accuracy on the vulnerable code in Table 3 and can tell
how the model identifies vulnerable code. However, recall ignores the secure code.
Precision covers this shortage by including misclassified secure code. If one only
cares about detecting vulnerable code and ignores the cost of manually filtering
secure code afterward, recall is the best option. If one wishes to have fewer errors
in the identified vulnerable code, precision can be taken. As a balanced version
between precision and recall, F1 can be used when an overall score is preferred.

Table 4: Model performance (%) using different evaluation metrics. Accuracy is
the default metric of CodeBERT and GraphCodeBERT.

Source Project Accuracy FPR FNR Precision Recall F1
CodeBERT

Devign FFmpeg 56.71 48.96 37.83 56.92 62.17 59.42
QEMU 64.31 18.33 59.04 62.42 40.96 49.46

Lin2018

Asterisk 99.77 0.04 55.56 80.00 44.44 57.14
FFmpeg 97.46 0.12 63.64 92.31 36.36 52.17
LibPNG 95.83 0.00 50.00 100.00 50.00 66.67
LibTIFF 88.89 6.31 46.67 53.33 53.33 53.33
Pidgin 99.85 0.00 40.00 100.00 60.00 75.00
VLC 99.89 0.00 14.29 100.00 85.71 92.31

CodeXGLUE Devign 61.49 13.41 68.05 66.94 31.95 43.26
GraphCodeBERT

Devign FFmpeg 56.99 61.61 25.13 55.83 74.87 63.96
QEMU 65.38 25.41 47.02 60.78 52.98 56.61

Lin2018

Asterisk 99.81 0.00 55.56 100.00 44.44 61.54
FFmpeg 97.35 0.84 48.48 70.83 51.52 59.65
LibPNG 96.88 0.00 37.50 100.00 62.50 76.92
LibTIFF 92.06 0.00 66.67 100.00 33.33 50.00
Pidgin 99.85 0.00 40.00 100.00 60.00 75.00
VLC 99.68 0.00 42.86 100.00 57.14 72.73

CodeXGLUE Devign 62.81 33.31 41.75 59.77 58.25 59.00

Answer : Precision, recall and F1 provide more informative and comprehen-
sive insights on model performance than accuracy. FPR might be useful in some

Imbalance in Software Vulnerability Detection 13

situations to limit the impact of false positives (e.g., static analysis), but preci-
sion can serve a similar purpose as a higher precision generally implies a lower
FPR.

5.3 RQ3: Effectiveness of Solutions for Addressing Imbalance

Experiments. We train CodeBERT and GraphCodeBERT following the method-
ology of different solutions for handling the imbalance issue. Based on the se-
lected evaluation metrics, precision, recall, and F1, by RQ2, the effectiveness of
solutions is investigated.

Results. Table 5 and Table 6 show the results on CodeBERT and GraphCode-
BERT, respectively. Note that in FFmpeg, Devign, the number of vulnerable
programs (4981) is greater than the secure one (4788), thus, no re-sampling-
based solutions are applied. Regardless of the dataset, model, and evaluation
metric, random down-sampling performs the worst since massive information
about the secure code is eliminated. In particular, when the imbalance ratio is
high and the data size is small (e.g., Asterisk from Lin2018), the remaining data
is insufficient to support the model training. The focal loss stands out as the
optimal choice for improving precision. The reason is that focal loss puts more
effort into hard and misclassified samples during the training procedure whether
those samples are vulnerable or secure. Thus, the model can more precisely pre-
dict a code sample to be vulnerable or secure. Two model-level solutions, MFE
and CB, are the worst regarding precision. The reason is that, the methodology
of these two solutions is to put relatively more attention to the vulnerable code
during the training procedure, thus, more vulnerable code should be correctly
identified than the baseline. This is confirmed by the results of recall where both
solutions outperform the others. While in this case, the focal loss gains low re-
call. With respect to the overall performance F1, random over-sampling seems
to be the best in most cases for both models.

Answer : No single existing solution is the best to address the imbalance issue
across all evaluation metrics. Specifically, to focal loss is the best option for
improving precision. MFE and CB shall be used for optimizing recall. Random
over-sampling is the best option when focusing on the overall F1 performance.
Nevertheless, the pursuit of a new, task-specific solution to address the imbalance
issue remains imperative.

5.4 RQ4: Investigation of External Factors

Experiments. Based on Table 5 and Table 6, we dig into the prediction results
to explore possible external factors.

Results. Note that in some cases, the model performance degrades after ap-
plying a solution. For instance, in Pidgin from Lin2018, CodeBERT with the
default setting gains 100% precision and 60% recall, but 75% precision and the
same recall by adversarial attack-based augmentation. We found that by over-
R, over-A, thresholding, and MFE, CodeBERT identifies the same vulnerable
samples as the baseline, and the code with the Overflow vulnerability (ID 23

14 Y. Guo et al.

Table 5: CodeBERT trained using different solutions for imbalance issues. Base-
line: the default setting. Down-R: random down-sampling. Over-R: ran-
dom over-sampling. Over-A: adversarial attack-based augmentation. For each
dataset, the best solution under a given metric is highlighted.
Source Project Baseline Down-R Over-R Over-A Thresholding MFE CB FL

Precision
Devign FFmpeg 56.92 - - - 0.00 67.72 63.14 88.24

QEMU 62.42 60.51 62.33 71.12 0.00 55.36 55.17 93.04
Asterisk 80.00 0.00 75.00 100.00 0.00 66.67 54.55 100.00
FFmpeg 92.31 3.23 76.19 65.38 100.00 34.29 38.71 90.00
LibPNG 100.00 66.67 100.00 85.71 0.00 62.50 70.00 100.00
LibTIFF 53.33 66.67 60.00 80.00 72.73 57.14 53.33 80.00
Pidgin 100.00 0.00 100.00 75.00 100.00 60.00 0.00 0.00

Lin2018

VLC 100.00 0.00 100.00 100.00 100.00 0.00 0.00 0.00
CodeXGLUE Devign 66.94 59.52 62.03 62.72 100.00 58.38 59.82 85.49

Recall
FFmpeg 62.17 - - - 0.00 31.42 47.86 4.01Devign QEMU 40.96 50.49 49.07 29.39 0.00 71.33 75.96 9.53
Asterisk 44.44 0.00 66.67 44.44 0.00 44.44 66.67 33.33
FFmpeg 36.36 3.03 48.48 51.52 36.36 72.73 72.73 54.55
LibPNG 50.00 25.00 62.50 75.00 0.00 62.50 87.50 62.50
LibTIFF 53.33 40.00 40.00 26.67 53.33 53.33 53.33 26.67
Pidgin 60.00 0.00 60.00 60.00 60.00 60.00 0.00 0.00

Lin2018

VLC 85.71 0.00 85.71 57.14 85.71 0.00 0.00 0.00
CodeXGLUE Devign 31.95 47.33 52.59 45.98 5.02 53.55 47.81 13.15

F1
FFmpeg 59.42 - - - 0.00 42.92 54.45 7.67Devign QEMU 49.46 55.05 54.91 41.59 0.00 62.33 63.92 17.29
Asterisk 57.14 0.00 70.59 61.54 0.00 53.33 60.00 50.00
FFmpeg 52.17 3.13 59.26 57.63 53.33 46.60 50.53 67.92
LibPNG 66.67 36.36 76.92 80.00 0.00 62.50 77.78 76.92
LibTIFF 53.33 50.00 48.00 40.00 61.54 55.17 53.33 40.00
Pidgin 75.00 0.00 75.00 66.67 75.00 60.00 0.00 0.00

Lin2018

VLC 92.31 0.00 92.31 72.73 92.31 0.00 0.00 0.00
CodeXGLUE Devign 43.26 52.73 56.92 53.06 9.56 55.86 53.14 22.79

in Table 2) is always misclassified. This is because this vulnerability type does
not appear in the training or validation sets (as shown in Figure 3(b)) and
the model cannot gain knowledge of this specific vulnerability type. Introducing
more vulnerable samples can just cause the overfitting problem. Another case
is in LibTIFF from Lin2018, the thresholding, MFE, and CB identify the same
vulnerable samples as the baseline and miss five vulnerability types, Denial Of
Service (ID 3,) Denial Of Service Execute Code Overflow (ID 6), Denial Of Ser-
vice Overflow (ID 10), Execute Code Overflow (ID 18), and Overflow (ID 23).
All these types are included in the training procedure (training and validation
sets) (see Figure 3(a)). All the trained models with or without solutions reach
53.33% recall, these solutions can only increase the correctness of secure code
because, by the corresponding training methodology, the model already reaches
the limit of identifying certain types of vulnerability. In addition, thresholding

Imbalance in Software Vulnerability Detection 15

Table 6: GraphCodeBERT trained using different solutions for imbalance issue.
Baseline: the default setting. Down-R: random down-sampling. Over-R: ran-
dom over-sampling. Over-A: adversarial attack-based augmentation. For each
dataset, the best solution under a given metric is highlighted.
Source Project Baseline Down-R Over-R Over-A Thresholding MFE CB FL

Precision
Devign FFmpeg 55.83 - - - 0.00 59.48 56.76 86.36

QEMU 60.78 58.43 61.19 65.28 93.33 56.70 54.93 85.15
Asterisk 100.00 0.00 44.44 100.00 100.00 38.46 23.53 100.00
FFmpeg 70.83 24.53 70.97 70.37 75.00 28.00 17.39 62.50
LibPNG 100.00 66.67 83.33 85.71 0.00 66.67 66.67 100.00
LibTIFF 100.00 0.00 100.00 77.78 0.00 55.56 47.06 100.00
Pidgin 100.00 0.00 100.00 75.00 0.00 50.00 20.00 66.67

Lin2018

VLC 100.00 0.00 83.33 100.00 0.00 75.00 75.00 100.00
CodeXGLUE Devign 59.77 58.25 59.75 60.05 100.00 60.36 60.86 90.21

Recall
FFmpeg 74.87 - - - 0.00 52.41 65.11 5.08Devign QEMU 52.98 54.94 53.07 37.67 6.23 64.02 62.51 15.32
Asterisk 44.44 0.00 44.44 44.44 33.33 55.56 44.44 22.22
FFmpeg 51.52 78.79 66.67 57.58 45.45 84.85 84.85 60.61
LibPNG 62.50 75.00 62.50 75.00 0.00 75.00 75.00 62.50
LibTIFF 33.33 0.00 40.00 46.67 0.00 66.67 53.33 26.67
Pidgin 60.00 0.00 80.00 60.00 0.00 80.00 60.00 80.00

Lin2018

VLC 57.14 0.00 71.43 85.71 0.00 85.71 85.71 71.43
CodeXGLUE Devign 58.25 55.70 56.89 54.50 4.54 61.04 57.85 13.94

F1
FFmpeg 63.96 - - - 0.00 55.72 60.65 9.60Devign QEMU 56.61 56.63 56.84 47.77 11.69 60.14 58.48 25.96
Asterisk 61.54 0.00 44.44 61.54 50.00 45.45 30.77 36.36
FFmpeg 59.65 37.41 68.75 63.33 56.60 42.11 28.87 61.54
LibPNG 76.92 70.59 71.43 80.00 0.00 70.59 70.59 76.92
LibTIFF 50.00 0.00 57.14 58.33 0.00 60.61 50.00 42.11
Pidgin 75.00 0.00 88.89 66.67 0.00 61.54 30.00 72.73

Lin2018

VLC 72.73 0.00 76.92 92.31 0.00 80.00 80.00 83.33
CodeXGLUE Devign 59.00 56.95 58.29 57.14 8.69 60.70 59.31 24.15

tends to ruin the model entirely, such as FFmpeg from Devign and LibPNG from
Lin2018, which is caused by the distribution shift between the validation set in
the training time and the test set in the test time. Distribution shift [25] is a
research topic per se and is not further explained in this paper.

Answer : External factors including the absence of vulnerability types in the
training time, inherent identification difficulty of certain vulnerability types, and
the distribution shift in data should be considered when developing a new solu-
tion.

5.5 Insights

Selecting evaluation metrics: In vulnerability detection, when selecting a
metric to evaluate a model’s performance, accuracy is the least suitable metric.
Recall should be used if only the detection on vulnerable code matters. Precision

16 Y. Guo et al.

23 3 101418 6 20 4 9 1225 6 3 1018 3 182325 6 10
0
3
6
9

12
15
18
21
24
27
30
33
36

#S
am

pl
es

training
validation
test

(a) LibTIFF

3 18 5 10 22 25 17 3 13 16 10 23 3 22 18
0

3

6

9

#S
am

pl
es

training
validation
test

(b) Pidgin

Fig. 3: Vulnerability type distribution in each split set (training, validation, and
test). x-axis: vulnerability type ID (Please refer to Table 2 for more details.).
y-axis: number of samples in the corresponding set. Source: Lin2018.

should be selected if one wishes to have less secure code in identified vulnerable
code. F1 can be considered from an overall perspective.

Designing solutions: When designing a solution to address imbalance, one
should consider the evaluation metric first. If the goal is to improve precision or
recall, modifying the loss function is more efficient than manipulating training
data. Minority over-sampling brings benefits to the overall evaluation. Vulnera-
bility type and difficulty in data should be considered when a solution fails.

6 Conclusion

This work studies the imbalance issue in software vulnerability detection. Seven
solutions proposed in other domains are investigated on nine open-source datasets
and two state-of-the-art deep learning models (CodeBERT and GraphCode-
BERT). We found the defaulting setting of CodeBERT and GraphCodeBERT
makes the training procedure focus more on the secure code, which causes a
high false negative rate (e.g., 68.05%). Existing solutions perform differently
over various datasets and models, which calls for a new solution specifically for
vulnerability detection. With the insights stated in the paper, this will be an
interesting future work. Furthermore, we explore external factors like the vul-
nerability type distribution that should be aware of when designing such a new
solution. There are many future research topics. The observations from this pa-
per should be tested on other datasets and for other programming languages.
Related to this, the observations should also be tested on other ML models other
than CodeBERT and GraphCodeBERT. External factors, which can affect the
performances, should be explored in more depth. This is particularly important
if a solution is about to be deployed in practice.

Imbalance in Software Vulnerability Detection 17

References

1. Amankwah, R., Kudjo, P., Yeboah, S.: Evaluation of software vulnerability detec-
tion methods and tools: a review. International Journal of Computer Applications
169, 22–27 (July 2017). https://doi.org/10.5120/ijca2017914750

2. Arusoaie, A., Ciobâca, S., Craciun, V., Gavrilut, D., Lucanu, D.: A comparison of
open-source static analysis tools for vulnerability detection in c/c++ code. In: 19th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting. pp. 161–168. IEEE (2017). https://doi.org/10.1109/SYNASC.2017.00035

3. Asterisk team: Asterisk website. https://www.asterisk.org/ (2022), online, ac-
cessed on 25 August 2023

4. Bellard, F.: Qemu wesite. https://www.qemu.org/ (2022), online, accessed on 25
August 2023

5. Bellard, F., FFmpeg team: Repository of ffmpeg on github. https://github.com/
FFmpeg/FFmpeg (2023), online, accessed on 25 August 2023

6. Bommasani, R., Hudson, D.A., Adeli, E., et al.: On the opportunities and risks
of foundation models. CoRR abs/2108.07258 (2021), https://arxiv.org/abs/
2108.07258

7. Brown, T., Mann, B., Ryder, N., et al.: Language models are few-shot learners.
In: Advances in Neural Information Processing Systems. pp. 1877–1901. Curran
Associates, Inc. (2020), https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

8. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance
problem in convolutional neural networks. Neural Networks 106, 249–259 (2018).
https://doi.org/https://doi.org/10.1016/j.neunet.2018.07.011

9. Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability
detection: are we there yet? IEEE Transactions on Software Engineering 48(09),
3280–3296 (September 2022). https://doi.org/10.1109/TSE.2021.3087402

10. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic mi-
nority over-sampling technique. Journal of Artificial Intelligence Research 16(1),
321–357 (June 2002). https://doi.org/10.1613/jair.953

11. Choi, S., Yang, S., Choi, S., Yun, S.: Improving test-time adaptation via shift-
agnostic weight regularization and nearest source prototypes. In: Computer Vi-
sion – ECCV 2022. pp. 440–458. Springer Nature Switzerland, Cham (2022).
https://doi.org/10.1007/978-3-031-19827-4_26

12. Croft, R., Xie, Y., Babar, M.A.: Data preparation for software vulnerability predic-
tion: a systematic literature review. IEEE Transactions on Software Engineering
49, 1044–1063 (March). https://doi.org/10.1109/TSE.2022.3171202

13. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss
based on effective number of samples. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9260–9269. IEEE (2019).
https://doi.org/10.1109/CVPR.2019.00949

14. Devlin, J., Chang, M., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. In: Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. pp. 4171–4186. Association for Computational Lin-
guistics (2019), https://aclanthology.org/N19-1423.pdf

15. Drummond, C., Holte, R.: C4.5, class imbalance, and cost sensitivity: why under-
sampling beats oversampling. In: International Conference on Machine Learning
Workshop on Learning from Imbalanced Data Sets II. Washington, DC, USA (July
2003), https://www.site.uottawa.ca/~nat/Workshop2003/drummondc.pdf

https://doi.org/10.5120/ijca2017914750
https://doi.org/10.1109/SYNASC.2017.00035
https://www.asterisk.org/
https://www.qemu.org/
https://github.com/FFmpeg/FFmpeg
https://github.com/FFmpeg/FFmpeg
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/978-3-031-19827-4_26
https://doi.org/10.1109/TSE.2022.3171202
https://doi.org/10.1109/CVPR.2019.00949
https://aclanthology.org/N19-1423.pdf
https://www.site.uottawa.ca/~nat/Workshop2003/drummondc.pdf

18 Y. Guo et al.

16. Fell, J.: A review of fuzzing tools and methods. PenTest Magazine, March (2017)
17. Feng, Z., Guo, D., Tang, D., et al.: Codebert: a pre-trained model for program-

ming and natural languages. In: Findings of the Association for Computational
Linguistics: EMNLP 2020. pp. 1536–1547. Association for Computational Linguis-
tics (November 2020). https://doi.org/10.18653/v1/2020.findings-emnlp.139

18. Garg, A., Degiovanni, R., Jimenez, M., Cordy, M., Papadakis, M., Le Traon,
Y.: Learning from what we know: How to perform vulnerability prediction us-
ing noisy historical data. Empirical Software Engineering 27(7) (December 2022).
https://doi.org/10.1007/s10664-022-10197-4

19. Guo, D., Ren, S., Lu, S., et al.: Graphcodebert: pre-training code representations
with data flow. In: International Conference on Learning Representations (2021),
https://openreview.net/pdf?id=jLoC4ez43PZ

20. Han, X., Zhang, Z., Ding, N., et al.: Pre-trained models: past, present and future.
AI Open 2, 225–250 (2021). https://doi.org/10.1016/j.aiopen.2021.08.002

21. He, H., Ma, Y.: Imbalanced learning: foundations, algorithms, and applications.
Wiley-IEEE Press, 1st edn. (2013)

22. Huang, C.Y., Dai, H.L.: Learning from class-imbalanced data: review of data driven
methods and algorithm driven methods. Data Science in Finance and Economics
1(1), 21–36 (2021). https://doi.org/10.3934/DSFE.2021002

23. Husain, H., Wu, H.H., Gazit, T., Allamanis, M., Brockschmidt, M.: Codesearchnet
challenge: evaluating the state of semantic code search. CoRR abs/1909.09436
(2019), http://arxiv.org/abs/1909.09436

24. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. In: 41st International Conference on Software Engineering. p. 1039–1049.
IEEE Press (2019). https://doi.org/10.1109/ICSE.2019.00108

25. Koh, P.W., Sagawa, S., Marklund, H., et al.: Wilds: a benchmark of in-the-wild
distribution shifts. In: 38th International Conference on Machine Learning. pp.
5637–5664. PMLR (July 2021)

26. Li, Z., Zou, D., Tang, J., Zhang, Z., Sun, M., Jin, H.: A comparative study of
deep learning-based vulnerability detection system. IEEE Access 7, 103184–103197
(2019). https://doi.org/10.1109/ACCESS.2019.2930578

27. Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: Sysevr: A frame-
work for using deep learning to detect software vulnerabilities. IEEE Trans-
actions on Dependable and Secure Computing 19(04), 2244–2258 (July 2022).
https://doi.org/10.1109/TDSC.2021.3051525

28. Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y.: Vuldeepecker:
a deep learning-based system for vulnerability detection. In: 25th Annual Net-
work and Distributed System Security Symposium. The Internet Society (February
2018), http://dx.doi.org/10.14722/ndss.2018.23158

29. Lin, G., Xiao, W., Zhang, J., Xiang, Y.: Deep learning-based vulnerable function
detection: a benchmark. In: Information and Communications Security. pp. 219–
232. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-
3-030-41579-2_13

30. Lin, G., Zhang, J., Luo, W., Pan, L., Xiang, Y., De Vel, O., Montague,
P.: Cross-project transfer representation learning for vulnerable function dis-
covery. IEEE Transactions on Industrial Informatics 14(7), 3289–3297 (2018).
https://doi.org/10.1109/TII.2018.2821768

31. Lin, G., Zhang, J., Luo, W., Pan, L., Xiang, Y., De Vel, O., Montague,
P.: Repository of lin2018 on github. https://github.com/DanielLin1986/
TransferRepresentationLearning (2019), online, accessed on 25 August 2023

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1007/s10664-022-10197-4
https://openreview.net/pdf?id=jLoC4ez43PZ
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.3934/DSFE.2021002
http://arxiv.org/abs/1909.09436
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/ACCESS.2019.2930578
https://doi.org/10.1109/TDSC.2021.3051525
http://dx.doi.org/10.14722/ndss.2018.23158
https://doi.org/10.1007/978-3-030-41579-2_13
https://doi.org/10.1007/978-3-030-41579-2_13
https://doi.org/10.1109/TII.2018.2821768
https://github.com/DanielLin1986/TransferRepresentationLearning
https://github.com/DanielLin1986/TransferRepresentationLearning

Imbalance in Software Vulnerability Detection 19

32. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 42(2),
318–327 (2020). https://doi.org/10.1109/TPAMI.2018.2858826

33. Liu, Y., Ott, M., Goyal, N., et al.: Roberta: a robustly optimized bert pretraining
approach. CoRR abs/1907.11692 (2019), https://arxiv.org/abs/1907.11692

34. Lu, J., Batra, D., Parikh, D., Lee, S.: Vilbert: pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks. In: 33rd Conference on Neural
Information Processing Systems (2019)

35. Lu, S., Guo, D., Ren, S., Huang, J., et al.: Codexglue: a machine learning bench-
mark dataset for code understanding and generation. In: Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track. Open-
Review.net (2021), url={https://openreview.net/forum?id=6lE4dQXaUcb}

36. Lu, S., Guo, D., Ren, S., et al.: Implementation of codexglue. https://github.
com/microsoft/CodeXGLUE (2022), online, accessed on 25 August 2023

37. Mazuera-Rozo, A., Mojica-Hanke, A., Linares-Vásquez, M., Bavota, G.: Shallow
or deep? an empirical study on detecting vulnerabilities using deep learning. In:
IEEE/ACM 29th International Conference on Program Comprehension. pp. 276–
287 (2021). https://doi.org/10.1109/ICPC52881.2021.00034

38. Mendoza, J., Mycroft, J., Milbury, L., Kahani, N., Jaskolka, J.: On the effectiveness
of data balancing techniques in the context of ml-based test case prioritization. In:
18th International Conference on Predictive Models and Data Analytics in Software
Engineering. p. 72–81. Association for Computing Machinery, New York, NY, USA
(2022). https://doi.org/10.1145/3558489.3559073

39. Pidgin team: Pidgin website. https://pidgin.im/ (2020), online, accessed on 25
August 2023

40. Pinconschi, E.: Repository of devign on github. https://github.com/epicosy/
devign (2020), online, accessed on 25 August 2023

41. Sam Leffler, S.G.: Repository of libtiff on gitlab. https://gitlab.com/libtiff/
libtiff (2022), online, accessed on 25 August 2023

42. Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats, I., Moazen, H., Sarro,
F.: A survey on machine learning techniques for source code analysis. CoRR
abs/2110.09610 (2021), https://arxiv.org/abs/2110.09610

43. Shen, Z., Chen, S., Coppolino, L.: A survey of automatic software vulnerability
detection, program repair, and defect prediction techniques. Security and Commu-
nication Networks 2020 (January 2020). https://doi.org/10.1155/2020/8858010

44. Shu, R., Xia, T., Williams, L., Menzies, T.: Dazzle: using ooptimized gen-
erative adversarial networks to address security data class imbalance is-
sue. In: 19th International Conference on Mining Software Repositories. p.
144–155. Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3524842.3528437

45. Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: Videobert: a joint model
for video and language representation learning. In: IEEE/CVF International Con-
ference on Computer Vision (ICCV). pp. 7463–7472. IEEE Computer Society, Los
Alamitos, CA, USA (November 2019). https://doi.org/10.1109/ICCV.2019.00756

46. Truta, C., Randers-Pehrson, G., Dilger, A.E., Schalnat, G.E.: Repository of libpng
on github. https://github.com/glennrp/libpng (2023), online, accessed on 25
August 2023

47. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In:
31st Conference on Neural Information Processing Systems. Curran Associates,
Inc. (2017), https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

https://doi.org/10.1109/TPAMI.2018.2858826
https://arxiv.org/abs/1907.11692
url={https://openreview.net/forum?id=6lE4dQXaUcb}
https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE
https://doi.org/10.1109/ICPC52881.2021.00034
https://doi.org/10.1145/3558489.3559073
https://pidgin.im/
https://github.com/epicosy/devign
https://github.com/epicosy/devign
https://gitlab.com/libtiff/libtiff
https://gitlab.com/libtiff/libtiff
https://arxiv.org/abs/2110.09610
https://doi.org/10.1155/2020/8858010
https://doi.org/10.1145/3524842.3528437
https://doi.org/10.1109/ICCV.2019.00756
https://github.com/glennrp/libpng
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

20 Y. Guo et al.

48. VLC team: Vlc media player website. https://github.com/videolan/vlc (2023),
online, accessed on 25 August 2023

49. Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.: Train-
ing deep neural networks on imbalanced data sets. In: International
Joint Conference on Neural Networks. pp. 4368–4374. IEEE (July 2016).
https://doi.org/10.1109/IJCNN.2016.7727770

50. Yang, Z., Shi, J., He, J., Lo, D.: Natural attack for pre-trained models of code. In:
International Conference on Software Engineering. p. 1482–1493. Association for
Computing Machinery (2022). https://doi.org/10.1145/3510003.3510146

51. You, Y., Zhang, Z., Hsieh, C., Demmel, J.: 100-epoch imagenet training with
alexnet in 24 minutes. CoRR abs/1709.05011 (2017), http://arxiv.org/abs/
1709.05011

52. Zhang, H., Li, Z., Li, G., Ma, L., Liu, Y., Jin, Z.: Generating adversarial ex-
amples for holding robustness of source code processing models. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. pp. 1169–1176 (2020).
https://doi.org/10.1609/aaai.v34i01.5469

53. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks,
p. 10197–10207. Curran Associates Inc., Red Hook, NY, USA (2019)

54. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks.
In: 33rd International Conference on Neural Information Processing Systems. pp.
10197–10207. Curran Associates Inc., Red Hook, NY, USA (December 2019),
https://dl.acm.org/doi/pdf/10.5555/3454287.3455202

55. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation
for semantic segmentation via class-balanced self-training. In: European Confer-
ence on Computer Vision. pp. 297–313. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-030-01219-9_18

https://github.com/videolan/vlc
https://doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1145/3510003.3510146
http://arxiv.org/abs/1709.05011
http://arxiv.org/abs/1709.05011
https://doi.org/10.1609/aaai.v34i01.5469
https://dl.acm.org/doi/pdf/10.5555/3454287.3455202
https://doi.org/10.1007/978-3-030-01219-9_18

	An Empirical Study of the Imbalance Issue in Software Vulnerability Detection

